Understanding Artificial intelligence and ethical issues associated with it

“Machine intelligence is the last invention that humanity will ever need to make.

        -Nick Bostrom

Machines has revolutionaries the word many times in history, it has proved its capacity of changing the power dynamics of world in past i.e. England dominated the world after industrial revolution in eighteenth century likewise after since world war, U.S.A. dominate the world with its science (about 585000 IT company are there in U.S).Machine Learning and Artificial Intelligence has bringing new revolution in the field of science. There are endless opportunities in this domain but, at the same time it brings some ethical challenges as well…...





What is artificial intelligence (AI)?

Artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems ( in laymen language AI can think and work as human brain). Specific applications of AI include expert systems, natural language processing, speech recognition and machine vision.

How does AI work?

In general, AI systems work by ingesting large amounts of labeled training data, analyzing the data for correlations and patterns, and using these patterns to make predictions about future states. In this way, a chatbot that is fed examples of text can learn to generate lifelike exchanges with people, or an image recognition tool can learn to identify and describe objects in images by reviewing millions of examples. New, rapidly improving generative AI techniques can create realistic text, images, music and other media.

AI programming focuses on cognitive skills that include the following:

 Learning. This aspect of AI programming focuses on acquiring data and creating rules for how to turn it into actionable information. The rules, which are called algorithms, provide computing devices with step-by-step instructions for how to complete a specific task.

 Reasoning. This aspect of AI programming focuses on choosing the right algorithm to reach a desired outcome.

 Self-correction. This aspect of AI programming is designed to continually fine-tune algorithms and ensure they provide the most accurate results possible.

 Creativity. This aspect of AI uses neural networks, rules-based systems, statistical methods and other AI techniques to generate new images, new text, new music and new ideas.

Differences between AI, machine learning and deep learning

AI, machine learning and deep learning are common terms in enterprise IT and sometimes used interchangeably, especially by companies in their marketing materials. But there are distinctions. The term AI, coined in the 1950s, refers to the simulation of human intelligence by machines. It covers an ever-changing set of capabilities as new technologies are developed. Technologies that come under the umbrella of AI include machine learning and deep learning.

Machine learning enables software applications to become more accurate at predicting outcomes without being explicitly programmed to do so. Machine learning algorithms use historical data as input to predict new output values. This approach became vastly more effective with the rise of large data sets to train on. Deep learning, a subset of machine learning, is based on our understanding of how the brain is structured. Deep learning's use of artificial neural networks structure is the underpinning of recent advances in AI, including self-driving cars and ChatGPT.

Importance of AI:

AI is important for its potential to change how we live, work and play. It has been effectively used in business to automate tasks done by humans, including customer service work, lead generation, fraud detection and quality control. In a number of areas, AI can perform tasks much better than humans. Particularly when it comes to repetitive, detail-oriented tasks, such as analyzing large numbers of legal documents to ensure relevant fields are filled in properly, AI tools often complete jobs quickly and with relatively few errors. Because of the massive data sets it can process, AI can also give enterprises insights into their operations they might not have been aware of. The rapidly expanding population of generative AI tools will be important in fields ranging from education and marketing to product design.

Indeed, advances in AI techniques have not only helped fuel an explosion in efficiency, but opened the door to entirely new business opportunities for some larger enterprises. Prior to the current wave of AI, it would have been hard to imagine using computer software to connect riders to taxis, but Uber has become a Fortune 500 company by doing just that.

AI has become central to many of today's largest and most successful companies, including Alphabet, Apple, Microsoft and Meta, where AI technologies are used to improve operations and outpace competitors.

Advantages of AI

The following are some advantages of AI.

 Good at detail-oriented jobs. AI has proven to be as good or better than doctors at diagnosing certain cancers, including breast cancer and melanoma.

 Reduced time for data-heavy tasks. AI is widely used in data-heavy industries, including banking and securities, pharma and insurance, to reduce the time it takes to analyze big data sets. Financial services, for example, routinely use AI to process loan applications and detect fraud.

 Saves labor and increases productivity. An example here is the use of warehouse automation, which grew during the pandemic and is expected to increase with the integration of AI and machine learning.

 Delivers consistent results. The best AI translation tools deliver high levels of consistency, offering even small businesses the ability to reach customers in their native language.

 Can improve customer satisfaction through personalization. AI can personalize content, messaging, ads, recommendations and websites to individual customers.

 AI-powered virtual agents are always available. AI programs do not need to sleep or take breaks, providing 24/7 service.

Disadvantages of AI

The following are some disadvantages of AI.

 Expensive.

 In Education tolls like ChatGPT, hamper cognitive development opportunity of human brain by helping in project completion, assignment making etc..

 Requires deep technical expertise.

 Limited supply of qualified workers to build AI tools.

 Reflects the biases of its training data, at scale.

 Lack of ability to generalize from one task to another.

 Eliminates human jobs, increasing unemployment rates.

 Ethical concerns: 

machine is moving rapidly on technological front but its ethical dimension is missing, here I am citing are some relevant examples which I have taken from UNESCO’s official site-

1-An image search for “school girl” will most probably reveal a page filled with women and girls in all sorts of sexualised costumes. Surprisingly, if you type “school boy”, results will mostly show ordinary young school boys. No men in sexualised costumes or very few.

These are examples of gender bias in artificial intelligence, originating from stereotypical representations deeply rooted in our societies.

AI-systems deliver biased results. Search-engine technology is not neutral as it processes big data and prioritises results with the most clicks relying both on user preferences and location. Thus, a search engine can become an echo chamber that upholds biases of the real world and further entrenches these prejudices and stereotypes online.

2-AI in the Court of Law

The use of AI in judicial systems around the world is increasing, creating more ethical questions to explore. AI could presumably evaluate cases and apply justice in a better, faster, and more efficient way than a judge. 

But there are many ethical challenges:

 Lack of transparency of AI tools: AI decisions are not always intelligible to humans.

 AI is not neutral: AI-based decisions are susceptible to inaccuracies, discriminatory outcomes, embedded or inserted bias.

 Surveillance practices for data gathering and privacy of court users.

 New concerns for fairness and risk for Human Rights and other fundamental values.

So, would you want to be judged by a robot in a court of law? Would you, even if we are not sure how it reaches its conclusions?

3-Autonomous car

Moral decisions are made by everyone daily. When a driver chooses to slam on the brakes to avoid hitting a jaywalker, they are making the moral decision to shift risk from the pedestrian to the people in the car.

Imagine an autonomous car with broken brakes going at full speed towards a grand-mother and a child. By deviating a little, one can be saved.

This time, it is not a human driver who is going to take the decision, but the car’s algorithm. 

Who would you choose, the grandmother or the child? Do you think there is only one right answer? 

This is a typical ethical dilemma, that shows the importance of ethics in the development of technologies

In summary, AI's ethical challenges include the following: bias, due to improperly trained algorithms and human bias; misuse, due to deepfakes and phishing; legal concerns, including AI libel and copyright issues; elimination of jobs; and data privacy concerns, particularly in the banking, healthcare and legal fields.

These components make up responsible AI use.

What are the 4 types of artificial intelligence?

Arend Hintze, an assistant professor of integrative biology and computer science and engineering at Michigan State University, explained that AI can be categorized into four types, beginning with the task-specific intelligent systems in wide use today and progressing to sentient systems, which do not yet exist. The categories are as follows.

 Type 1: Reactive machines. These AI systems have no memory and are task-specific. An example is Deep Blue, the IBM chess program that beat Garry Kasparov in the 1990s. Deep Blue can identify pieces on a chessboard and make predictions, but because it has no memory, it cannot use past experiences to inform future ones.

 Type 2: Limited memory. These AI systems have memory, so they can use past experiences to inform future decisions. Some of the decision-making functions in self-driving cars are designed this way.

 Type 3: Theory of mind. Theory of mind is a psychology term. When applied to AI, it means the system would have the social intelligence to understand emotions. This type of AI will be able to infer human intentions and predict behavior, a necessary skill for AI systems to become integral members of human teams.

 Type 4: Self-awareness. In this category, AI systems have a sense of self, which gives them consciousness. Machines with self-awareness understand their own current state. This type of AI does not yet exist.

 AI technology and modern day application:

AI is incorporated into a variety of different types of technology. Here are seven examples.

Automation. When paired with AI technologies, automation tools can expand the volume and types of tasks performed. An example is robotic process automation (RPA), a type of software that automates repetitive, rules-based data processing tasks traditionally done by humans. When combined with machine learning and emerging AI tools, RPA can automate bigger portions of enterprise jobs, enabling RPA's tactical bots to pass along intelligence from AI and respond to process changes.

Machine learning. This is the science of getting a computer to act without programming. Deep learning is a subset of machine learning that, in very simple terms, can be thought of as the automation of predictive analytics. There are three types of machine learning algorithms:

Supervised learning. Data sets are labeled so that patterns can be detected and used to label new data sets.

Unsupervised learning. Data sets aren't labeled and are sorted according to similarities or differences.

Reinforcement learning. Data sets aren't labeled but, after performing an action or several actions, the AI system is given feedback.

Machine vision. This technology gives a machine the ability to see. Machine vision captures and analyzes visual information using a camera, analog-to-digital conversion and digital signal processing. It is often compared to human eyesight, but machine vision isn't bound by biology and can be programmed to see through walls, for example. It is used in a range of applications from signature identification to medical image analysis. Computer vision, which is focused on machine-based image processing, is often conflated with machine vision.

Natural language processing (NLP). This is the processing of human language by a computer program. One of the older and best-known examples of NLP is spam detection, which looks at the subject line and text of an email and decides if it's junk. Current approaches to NLP are based on machine learning. NLP tasks include text translation, sentiment analysis and speech recognition.

Robotics. This field of engineering focuses on the design and manufacturing of robots. Robots are often used to perform tasks that are difficult for humans to perform or perform consistently. For example, robots are used in car production assembly lines or by NASA to move large objects in space. Researchers also use machine learning to build robots that can interact in social settings.

Self-driving cars. Autonomous vehicles use a combination of computer vision, image recognition and deep learning to build automated skills to pilot a vehicle while staying in a given lane and avoiding unexpected obstructions, such as pedestrians.

Text, image and audio generation. Generative AI techniques, which create various types of media from text prompts, are being applied extensively across businesses to create a seemingly limitless range of content types from photorealistic art to email responses and screenplays.

What are the applications of AI?

Artificial intelligence has made its way into a wide variety of markets. Here are 11 examples.

AI in healthcare. The biggest bets are on improving patient outcomes and reducing costs. Companies are applying machine learning to make better and faster medical diagnoses than humans. One of the best-known healthcare technologies is IBM Watson. It understands natural language and can respond to questions asked of it. The system mines patient data and other available data sources to form a hypothesis, which it then presents with a confidence scoring schema. An array of AI technologies is also being used to predict, fight and nderstand pandemics such as COVID-19.

AI in business. Machine learning algorithms are being integrated into analytics and customer relationship management (CRM) platforms to uncover information on how to better serve customers. Chatbots have been incorporated into websites to provide immediate service to customers. The rapid advancement of generative AI technology such as ChatGPT is expected to have far-reaching consequences: eliminating jobs, revolutionizing product design and disrupting business models.

AI in education. AI can automate grading, giving educators more time for other tasks. It can assess students and ad apt to their needs, helping them work at their own pace. AI tutors can provide additional support to students, ensuring they stay on track. The technology could also change where and how students learn, perhaps even replacing some teachers. As demonstrated by ChatGPT, Bard and other large language models, generative AI can help educators craft course work and other teaching materials and engage students in new ways. The advent of these tools also forces educators to rethink student homework and testing and revise policies on plagiarism.

AI in finance. AI in personal finance applications, such as Intuit Mint or TurboTax, is disrupting financial institutions. Applications such as these collect personal data and provide financial advice. Other programs, such as IBM Watson, have been applied to the process of buying a home. Today, artificial intelligence software performs much of the trading on Wall Street.

AI in law. The discovery process -- sifting through documents -- in law is often overwhelming for humans. Using AI to help automate the legal industry's labor-intensive processes is saving time and improving client service. Law firms use machine learning to describe data and predict outcomes, computer vision to classify and extract information from documents, and NLP to interpret requests for information.

AI in entertainment and media. The entertainment business uses AI techniques for targeted advertising, recommending content, distribution, detecting fraud, creating scripts and making movies. Automated journalism helps newsrooms streamline media workflows reducing time, costs and complexity. Newsrooms use AI to automate routine tasks, such as data entry and proofreading; and to research topics and assist with headlines. How journalism can reliably use ChatGPT and other generative AI to generate content is open to question.

AI in software coding and IT processes. New generative AI tools can be used to produce application code based on natural language prompts, but it is early days for these tools and unlikely they will replace software engineers soon. AI is also being used to automate many IT processes, including data entry, fraud detection, customer service, and predictive maintenance and security.

Security. AI and machine learning are at the top of the buzzword list security vendors use to market their products, so buyers should approach with caution. Still, AI techniques are being successfully applied to multiple aspects of cybersecurity, including anomaly detection, solving the false-positive problem and conducting behavioral threat analytics. Organizations use machine learning in security information and event management (SIEM) software and related areas to detect anomalies and identify suspicious activities that indicate threats. By analyzing data and using logic to identify similarities to known malicious code, AI can provide alerts to new and emerging attacks much sooner than human employees and previous technology iterations.

AI in manufacturing. Manufacturing has been at the forefront of incorporating robots into the workflow. For example, the industrial robots that were at one time programmed to perform single tasks and separated from human workers, increasingly function as cobots: Smaller, multitasking robots that collaborate with humans and take on responsibility for more parts of the job in warehouses, factory floors and other workspaces.

AI in banking. Banks are successfully employing chatbots to make their customers aware of services and offerings and to handle transactions that don't require human intervention. AI virtual assistants are used to improve and cut the costs of compliance with banking regulations. Banking organizations use AI to improve their decision-making for loans, set credit limits and identify investment opportunities.

AI in transportation. In addition to AI's fundamental role in operating autonomous vehicles, AI technologies are used in transportation to manage traffic, predict flight delays, and make ocean shipping safer and more efficient. In supply chains, AI is replacing traditional methods of forecasting demand and predicting disruptions, a trend accelerated by COVID-19 when many companies were caught off guard by the effects of a global pandemic on the supply and demand of goods.

Augmented intelligence vs. artificial intelligence

Some industry experts have argued that the term artificial intelligence is too closely linked to popular culture, which has caused the general public to have improbable expectations about how AI will change the workplace and life in general. They have suggested using the term augmented intelligence to differentiate between AI systems that act autonomously -- popular culture examples include Hal 9000 and The Terminator -- and AI tools that support humans.

 Augmented intelligence. Some researchers and marketers hope the label augmented intelligence, which has a more neutral connotation, will help people understand that most implementations of AI will be weak and simply improve products and services. Examples include automatically surfacing important information in business intelligence reports or highlighting important information in legal filings. The rapid adoption of ChatGPT and Bard across industry indicates a willingness to use AI to support human decision-making.

Artificial intelligence. True AI, or AGI, is closely associated with the concept of the technological singularity -- a future ruled by an artificial superintelligence that far surpasses the human brain's ability to understand it or how it is shaping our reality. This remains within the realm of science fiction, though some developers are working on the problem. Many believe that technologies such as quantum computing could play an important role in making AGI a reality and that we should reserve the use of the term AI for this kind of general intelligence.

AI governance and regulations

Despite potential risks, there are currently few regulations governing the use of AI tools, and where laws do exist, they typically pertain to AI indirectly. For example, as previously mentioned, U.S. Fair Lending regulations require financial institutions to explain credit decisions to potential customers. This limits the extent to which lenders can use deep learning algorithms, which by their nature are opaque and lack explainability.

The European Union's General Data Protection Regulation (GDPR) is considering AI regulations. GDPR's strict limits on how enterprises can use consumer data already limits the training and functionality of many consumer-facing AI applications.

Indian Parliament is yet to come up with Data Protection Act, B.N Srikrishnan committee ( commissioned by Government of India) has given insight for the same.

Crafting laws to regulate AI will not be easy, in part because AI comprises a variety of technologies that companies use for different ends, and partly because regulations can come at the cost of AI progress and development. The rapid evolution of AI technologies is another obstacle to forming meaningful regulation of AI, as are the challenges presented by AI's lack of transparency that make it difficult to see how the algorithms reach their results. Moreover, technology breakthroughs and novel applications such as ChatGPT and Dall-E can make existing laws instantly obsolete. And, of course, the laws that governments do manage to craft to regulate AI don't stop criminals from using the technology with malicious intent.

AI is emerging technology that has endless opportunities, till it serves human there is a concerns of enslaving human related to automation. It is a double egged sword needs to be used in cautious manner.      

Post a Comment

0 Comments